IndexToString#
- class pyspark.ml.feature.IndexToString(*, inputCol=None, outputCol=None, labels=None)[source]#
 A
pyspark.ml.base.Transformerthat maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels (which take precedence over ML attributes).New in version 1.6.0.
See also
StringIndexerfor converting categorical values into category indices
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of inputCol or its default value.
Gets the value of
labelsor its default value.getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of 'write().save(path)'.
set(param, value)Sets a parameter in the embedded param map.
setInputCol(value)Sets the value of
inputCol.setLabels(value)Sets the value of
labels.setOutputCol(value)Sets the value of
outputCol.setParams(self, \*[, inputCol, outputCol, ...])Sets params for this IndexToString.
transform(dataset[, params])Transforms the input dataset with optional parameters.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- clear(param)#
 Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
 Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
 - extradict, optional
 Extra parameters to copy to the new instance
- Returns
 JavaParamsCopy of this instance
- explainParam(param)#
 Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
 Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
 Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- getInputCol()#
 Gets the value of inputCol or its default value.
- getOrDefault(param)#
 Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
 Gets the value of outputCol or its default value.
- getParam(paramName)#
 Gets a param by its name.
- hasDefault(param)#
 Checks whether a param has a default value.
- hasParam(paramName)#
 Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
 Checks whether a param is explicitly set by user or has a default value.
- isSet(param)#
 Checks whether a param is explicitly set by user.
- classmethod load(path)#
 Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
 Returns an MLReader instance for this class.
- save(path)#
 Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param, value)#
 Sets a parameter in the embedded param map.
- setParams(self, \*, inputCol=None, outputCol=None, labels=None)[source]#
 Sets params for this IndexToString.
New in version 1.6.0.
- transform(dataset, params=None)#
 Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
 - dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
 an optional param map that overrides embedded params.
- dataset
 - Returns
 pyspark.sql.DataFrametransformed dataset
- write()#
 Returns an MLWriter instance for this ML instance.
Attributes Documentation
- inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')#
 
- labels = Param(parent='undefined', name='labels', doc='Optional array of labels specifying index-string mapping. If not provided or if empty, then metadata from inputCol is used instead.')#
 
- outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
 
- params#
 Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
- uid#
 A unique id for the object.