Package org.apache.spark.mllib.stat
Class KernelDensity
Object
org.apache.spark.mllib.stat.KernelDensity
- All Implemented Interfaces:
 Serializable
Kernel density estimation. Given a sample from a population, estimate its probability density
 function at each of the given evaluation points using kernels. Only Gaussian kernel is supported.
 
Scala example:
 val sample = sc.parallelize(Seq(0.0, 1.0, 4.0, 4.0))
 val kd = new KernelDensity()
   .setSample(sample)
   .setBandwidth(3.0)
 val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
 - See Also:
 
- 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptiondouble[]estimate(double[] points) Estimates probability density function at the given array of points.static doublenormPdf(double mean, double standardDeviation, double logStandardDeviationPlusHalfLog2Pi, double x) Evaluates the PDF of a normal distribution.setBandwidth(double bandwidth) Sets the bandwidth (standard deviation) of the Gaussian kernel (default:1.0).Sets the sample to use for density estimation (for Java users).Sets the sample to use for density estimation. 
- 
Constructor Details
- 
KernelDensity
public KernelDensity() 
 - 
 - 
Method Details
- 
normPdf
public static double normPdf(double mean, double standardDeviation, double logStandardDeviationPlusHalfLog2Pi, double x) Evaluates the PDF of a normal distribution. - 
setBandwidth
Sets the bandwidth (standard deviation) of the Gaussian kernel (default:1.0).- Parameters:
 bandwidth- (undocumented)- Returns:
 - (undocumented)
 
 - 
setSample
Sets the sample to use for density estimation.- Parameters:
 sample- (undocumented)- Returns:
 - (undocumented)
 
 - 
setSample
Sets the sample to use for density estimation (for Java users).- Parameters:
 sample- (undocumented)- Returns:
 - (undocumented)
 
 - 
estimate
public double[] estimate(double[] points) Estimates probability density function at the given array of points.- Parameters:
 points- (undocumented)- Returns:
 - (undocumented)
 
 
 -